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On Levels in Arrangements of Lines, Segments, Planes, and Triangles*

Pankaj K. Agarwalt

Abstract

We consider the problem of bounding the complexity of the
k-th level in an arrangement of n curves or surfaces, a prob-
lem dual to, and extending, the well-known k-set problem.
{a) We review and simplify some old proofs in new disguise
and give new proofs of the bound O{nvk + 1) for the com-
plexity of the k-th level in an arrangement of = lines. (b) We
derive an improved version of Lovdsz Lemma in any dimen-
sion, and use it to prove a new bound, O(n*k*/®), on the
complexity of the k-th level in an arrangement of n planesin
R, or on the number of k-sets in a set of n points in three
dimensions. {c} We show that the complexity of any single
level in an arrangement of = line segments in the plane is
O(n*?), and that the complexity of any single level in an
arrangement of n triangles in 3-space is O(n'"/®),

1 Introduction

Background. The k-set problem is one of the most chal-
lenging open problems in combinatorial geometry. The sim-
plest variant of the problem is: Given a set S of n points in
the plane in general position, and a parameter 0 < k < n—2,
what is the maximum possible number of lines that pass
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through a pair of points of S and have exactly k points of
S in one of the open halfplanes that they define? In a dual
setting, we are given a set £ of n lines in the plane in general
position, and want to bound the maximum possible number
of vertices v of the arrangement A(L), such that exactly k
lines pass below v. We denote this set of vertices by V.
(Strictly speaking, |Vi| is a slightly different quantity than
the one defined above, as it corresponds to the number of
lines passing through two of the given points and having
exactly k of the remaining points below them.) A slightly
different variant of the dual problem is to define the k-th
level of the arrangement, as the closure of the set of points
that lie on the lines and have exactly k lines below them,
and seek a bound on the number of vertices of that level.
{Each vertex of this closure may have either k or k — 1 lines
below it.) See Figure 1 for an illustration.

Figure 1: The third level in an arrangement of lines. The
vertices of V; are indicated by empty circles and the vertices
of V3 are marked by black circles.

The k-set problem was first studied about 1970 by Erdés
et al. and by Lovész {11, 19]. These papers have established
an upper bound O(nvk + 1) and a lower bound Q{nlog(k+
1)} on the desired quantity, leaving a fairly big gap that is
still mostly open. The only further progress on this problem
is due to Pach et al. [21}, where the upper bound is slightly
improved to O(nvk + 1/log* (k + 1)); see [4, 10] for related
results.

In the dual setting, the problem can be generalized in an
obvious manner: In the plane, we are given a collection &
of n r-monotone curves, each being the graph of a contin-
uous totally or partially defined function, and a parameter
8 < k < n, and wish to bound the complerity {i.e., the pum-
ber of vertices) of the k-th level in the arrangement A(E),
defined exactly as in the case of lines. In this more general




setting only two results are known: A recent seemingly weak,
but elegant analysis by Tamaki and Tokuyama [23] yields the
bound O(n?*/*?) on the complexity of a level in an arrange-
ment of n pseudo-parabolas, which are graphs of total func-
tions, each pair of which intersect at most twice. We also
mention the case of pseudo-hnes, which are z-monotone con-
nected curves, unbounded at either end, each pair of which
intersect exactly once, where a slightly larger lower bound

of Q(n - 2°V198™Y for the complexity of the median level is
established in {18]. Our proof techniques and upper bounds
apply equally well to the case of pseudo-lines.

Similar extensions apply in higher dimensions. In the
primal setting, we are given a set S of n points in R? in
general position, and wish to bound the number of hyper-
planes passing through d of the points such that one of the
halfspaces that they bound contains exactly k points of S.
For d = 3, the best known upper and lower bounds are,
respectively, O(n®/3) and Q(nlogn) [3, 8]. For d > 3,
the best known upper bound is O(n?°¢), for some expo-
nentially small but positive constant ¢g [26]. Note that, in
contrast to the planar case, these bounds depend only on n
and not on k.

We can formulate the problem in general dimension, in
a dual setting: We consider an arrangement of hyperplanes,
or, more generally, of surfaces that are graphs of continuous
total or partial functions, and define the k-th level of the
arrangement exactly as in the planar case. We now seek
bounds on the maximum possible number of vertices (or of
faces of all dimensions) of the level. Except for the case of
hyperplanes, which is equivalent to the k-set problem men-
tioned in the preceding paragraph, no nontrivial bounds for
the entire range of values of k are known.

In spite of the sorry state of the problem, one can obtain
nontrivial bounds when k is small. The probabilistic analy-
sis of Clarkson and Shor [7] (see also [22]) yields fairly sharp
bounds on the combined complexity of the first k levels in
arrangements. For the case of hyperplanes, for example, the
bound is ©(n!¥/2/£l4/21y For sufficiently small k, this gives
a better upper bound on the complexity of a single level than
the general bound stated above. The analysis of Clarkson
and Shor {7] also implies, under fairly general assumptions
that, for a constant k > 0, the worst-case number of ver-
tices of the k-th level is asymptotically proportional to the
maximum possible number of vertices on the lower envelope
(i.e., the 0-th level) of the surfaces.

New Results. In this paper we make several contribu-
tions to these problems: :

We first review some old proofs in new disguise, and
present new proofs of the upper bound O(nvk + 1) for the
original planar k-set problem (or, dually, for the case of the
k-th level in an arrangement of n straight lines in the plane).
We review the proof technique of Gusfield [13], which, as
we perceive, is not well known within the combinatorial and
computational geometry communities, and show its relation-
ship to other proofs. We also give a simple proof of the dual
version of what we call “Lovasz Lemma” (see Lemma 2.3 be-
low) that is used to prove the bound. As is well known, these
techniques apply equally well to arrangements of pseudo-
lines; see, for example, [12].

We adapt two of our proof techniques to yield the bound
O(n*'?) on the complexity of a single level in an arrangement
of n line segments (or “pseudo-segments,” to be defined be-
low). As far as we know, this bound is new.

We then proceed to study the problem in higher dimen-
sions. First we obtain an improved version of Lovész Lemma
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that has a rather simple proof. Specifically, we show that no
line can intersect more than O(k?~') k-set simplices, where
8 k-set simpler is a (d — 1)-dimensional simplex, spanned
by d points of S, such that the hyperplane containing the
simplex has exactly k points of S in one of its open half-
spaces. The previous bound was O(n?~!) (see [3, 19]), so
this is a significant improvement when k <« n. Plugging
the new bound into the analysis technique of [8], we show
that the complexity of the k-th level in an arrangement of
n planes in 3-space, and thus, the number of k-sets in a
set of n points in R®, is O(n?k?/3). This is the first general
bound for arrangements of planes that depends on k, besides
the aforementioned O(nk?) bound on the overall complex-
ity of the first k levels. The new bound is an improvement
when k = Q(n%*). A similar improved bound, of the form
O(n?=°4=¢4k*d), can be obtained in any dimension d > 3,
for appropriate constants €4, ¢4, depending only on d, by
combining the strengthened Lovasz Lemma with the analy-
sis of Zivaljevi¢ and Vreica [26]; see also [3).

Finally, we consider the case of triangles in 3-space, and
show that the complexity of a single level in an arrangement
of n such triangles is O(n'"/¢).

2 Arrangements of Lines

Let £ be a collection of n lines in the plane in general po-
sition. Let Vi, for k = 0,...,n — 2, denote, as in the in-
troduction, the set of vertices of the arrangement A(L) that
have exactly k lines below them. Then the set of vertices of
the k-th level is Vi U Vi_1 (or just Vi, for k£ = 0). When
the level passes through a vertex of Vi, (resp. of V4), it
bends to the left (resp. to the right) as we traverse it in the
positive z-direction. See Figure 1.

In this section we give four proofs of the following well-
known result (which, as already pointed out, provides an es-
timate which is slightly larger than the best currently known
upper bound of Pach et al. [21]):

Theorem 2.1 The complezity of the k-th level of A(L) is
O(nvk +1).

Remark: In most of the following proofs we will actually
argue that [Vi_1| = O(nvk). The claimed bound on the
number of vertices of the k-th level follows by repeating the
argument for |Vi| and combining the two estimates.

First Proof (Potential Function): This proof is not
new, and is an adaptation of the analysis technique of Gus-
field {13, 14]. We give it for the sake of completeness, and
because we will shortly apply a variant of it to the case
of segments. We note that the way it is presented below
is somewhat different than Gusfield’s own analysis; we will
further comment on Gusfield’s analysis later on.

Let the lines in £ be £),£s,...,¢,, sorted in the order of
decreasing slope, and let k denote the given level. For any
a € R we say that the level of a line £ € £ is j at a if
exactly 7 lines of £ intersect the vertical line £ = a below €.
For each z € R, define the potential function

®(z) = Z{) | the level of ¢; at z is < k}.

We clearly have ®(~c0), $(+00) = O(nk) (in fact, $(z) =
O(nk) for each z). As we sweep A(L) with a vertical line
from left to right, the value of ®(z) can change only when z
equals the abscissa v of a vertex v € Vi_ (refer to Figure 1;
note that ®(x) does not change at vertices of Vi.) Suppose




that v € Vi) is the intersection of lines ¢; and ¢, with j > 4.
Then, as easily checked, the change A®(v;) = (v, +¢) —
®(v: —¢), for a sufficiently small € > 0, is j—i > 0. In other
words

$(+00) = (o0} + Y A®(vz)=O(nk),
vEV,_;

with each of these changes being a positive integer.

The number of vertices v at which A&(v:) > vk is no
more than O(nvk), as the sum of Ad{v;) at these ver-
tices is O(nk), and each term in the sum is larger than vk.
Concerning v at which the change is at most vk, there are
at most n — 1 vertices with corresponding pairs of indices
(3,£+ 1), n — 2 vertices with pairs {i,i + 2), etc., for a total

£
> -+ -2+-+(n-vE+1) <nvk

vertices. Combining the two estimates, we conclude that
{Vi-1} = O(nVk). In fact, a more careful counting gives the
bound 2nvE. o

Second Proof (Concave Chains): Let Vi.; denote, as
above, the set of all vertices of the k-th level of A{L) at
which the level makes a left turn, passing from a line with
smaller slope to a line with larger slope. We associate with
the k-th level a collection of k concave chains, where each
such chain is an unbounded z-monotone concave polygonal
curve contained in the union of the lines of L. (As will be
seen below, the chains in a certain sense “cover” the portion
of A(L) below the level.) This is done as follows. The
desired chains, denoted ¢1,...,¢, start at £ = —co along
the k lowest lines of the arrangement {(these are the lines
with the k largest slopes}. Whenever some chain ¢; reaches
the k-th level, we are at a vertex v € Vi_1, as is easily
checked. We then continue ¢; to the right along the other
line incident to v. The chains bend only at vertices of Vi_1;
otherwise each chain follows the line it is on. See Figure 2
for an illustration.
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Figure 2: The concave chains associated with the third level;
the level itself is drawn in bold, and the dashed paths denote
the concave chains ¢y, ¢z, ¢3.

It is easily seen that the resulting chains satisfy the fol-
lowing properties:

(i) The union of the chains is the closure of the portion
of the union of the lines that lies below the k-th level.
Except for the vertices of V.1, the union of the chains
Hes strictly below the k-th level.

(i) The chains are vertex-disjoint and have non-overlapping
edges, but they generally cross each other.

(iif) All the vertices of the chains lie on the upper envelope
of the chains. Indeed, each chain, except for its ver-
tices, lies fully below the k-th level, so any vertex of
any chain lies above all the chains that are not incident
to it.

Gusfield’s analysis, with minor medifications, essentially es-
tablishes the following more general bound. The same result
has been obtained independently by Halperin and Sharir {15],
who were not aware of Gusfield’s earlier work:

Theorem 2.2 ({13, 14, 15]) The overcll number of ver-
tices of k concave chains, which are vertez-disjoint and have
non-overlapping edges, in an arrengement of n lines in the
plane, is O(nVk).

This result clearly yields another proof Theorem 2.1. We
leave it to the reader to verify that the potential-function
proof applies, almost verbatim, to the general case of con-
cave chains, 0

Note that the above bound does not count crossings be-
tween chains.

Remarks: (1) If the concave chains are not allowed to cross
each other, then their overall complexity is only O(k*/*n?/3+
n), as shown in {15, 16}, but the analysis in these papers cru-
cially relies on the fact that the chains cannot cross.

(2) The chains associated with the k-th level have the ad-
ditional property (iii) that all their vertices appear on their
upper envelope. Can a sharper upper bound be proved for
the complexity of k concave chains with this extra property?
Note, however, that property (iii) is not strong enough to
improve the bound beyond O(k%*°n?*? 4 n), as it is possi-
ble to produce a collection of k chains in an arrangement of
n lines with a total of Q(k¥3n%/3 + n) vertices, so that all
these vertices occur on the combined upper envelope of the
chains [17].

Third Proof (Concave Chains and Lovdsz Lemmaj:
One of the standard (and among the first) ways to prove
the theorem is via the following statement, which we will
refer to as “Lovész Lemma” {19]. It is usually stated in the
primal plane, for a collection of n points, but we will state
a dual version of the lemma, for arrangements of lines, and
give a simple proof that uses the concave chain structure,
with the aim of extending it to other types of arrangements.

Let £ be a collection of n lines in the plane in general
position, and let 1 < k < »n — 1. For each vertex v € Viq,
let W, denote the double wedge formed by the two lines that
meet at v (W, is the region between the upper and lower
envelopes of these two lines). See Figure 3.

Lemma 2.3 (Dual Lovdsz Lemma in 2D) For any point
z in the plane not lying on any line of £, the number of
double wedges Wy, for v € Vi1, that contain z is ot most
2min {k, j} < 2k, where j is the number of lines of £ that
pass below z. Actually, there are at most min {k,;} left
wedges and at most min {k, j} right wedges that contain z.

Proof: Let ¢ be one of the concave chains obtained in the
previous proof, and consider the system of double wedges
W, over all vertices v of ¢. The concavity of ¢ is easily seen
to imply that z can lie in at most two of these double wedges
{(in at most one right wedge and in at most one left wedge).
Since we have k such chains, z can lie in at most 2k double
wedges Wy, for v € Vi—1. Moreover, if z lies above exactly




Figure 3: The setup for Lovdsz Lemma for the case of lines.
The right wedges of W, W, are shown shaded.

J < k lines of £, then it lies only above j concave chains, and
can therefore only belong to double wedges corresponding to
vertices of these chains. This easily implies the lemma. O

We can now complete the third proof of the theorem,
using an analysis dual to that in the original proof in [19].
That is, fix a vertical line X, and intersect each W,, for
v € Vi-1, with ), to obtain a system of |Vi_1] intervals on A,
having a total of n endpoints (which are the intersections of
the lines in £ with A). It follows by a simple (and standard)
counting argument (such as in [5, 1 2]) that A must contain
a point that lies in at least |Vi—1]*/4n? intervals. Since
this number cannot be more than 2k, we obtain {Vi_;| <

2v/2nvE. With some care, this can be improved to 2nvk.O

Fourth Proof (Concave Chains and Cauchy-Schwarz
Inequality): Let £ = {£,...,€n} be a set of n lines, k
be an integer between 0 and n — 2, and c1,...,¢x be the
concave chains associated with the k-th level of A(L), as
defined above.

Let w;; denote the number of lines common to chains c;
and ¢j, for 1 <i< j<k Foreachg=1,...,n, let M,
denote the number of chains that have an edge contained in

€. Note that [Vi_y| = 3°0_) Mo — k. On the other hand,
we have
Tui=2 (7).
=1
Hence,
n n
Wil = Y Mg—k=) (M—1)+n—k
9=1 g¢=1
" rar 1/2
1/2 [} _
< (2n) [2:1(2)] +n-k
q:

1/2
(211)1/2 (Zw.‘j) +n-k.
g

Fix a pair of chains ¢;, ¢;. The concavity of the chains is
easily seen to imply that both ¢; and ¢; must lie on or below
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each of the w;; common lines. That is, both ¢, and c; lie
below (or on) the lower envelope E of these lines, so each
chain touches each of these lines only at its unique segment
that appears on the lower envelope. It follows that ¢; and
c; must intersect each other at least once below each of the
w;; segments of E, so t;;, the number of crossings between
¢ and ¢;, must be at least w;;. See Figure 4. We thus
have 3°, cwi; < 37, ti; < nk, where the latter inequality

follows from the fact that the number of chain- -crossings is
equal to the number of vertices of .A(L) at level < k, and
this number is known to be at most nk [1]. This impliw
that

IA

[Vi-1]

1/2
(2n)"/? (Z w,,-) +n-k
42

(2n) 2 (k) * 4+ n~k
22 vk +n—k.

IA

Note that the constant of proportionality is better than
those yielded by the earlier proofs.

O

Figure 4: The chains ¢; and ¢; must cross at least w;; times.

3 Arrangements of Segments

In this section we extend some of the proofs given above to
the case of line segments. Let S be a collection of n segments
in the plane in general position. Fork = 0,...,n~-1, the k-th
level in the arrangement A(S) of S is defined, as in the case
of lines, to be the closure of the set of all points w that lie on
segments of S and are such that the open downward-directed
vertical ray emanating from w intersects exactly k segments
of S (that is, there are k segments of S below w). The
complezity of a level is the number of vertices of A(S) that
lie on the level plus the number of discontinuities of the level.
(Unlike the case of lines, a level of A(S) is not necessarily
connected, and it may involve vertical jumps from a segment
to the segment lying directly above or below it, when a new
segment starts or ends at a point below the level. Clearly;
the number of such discontinuities is at most 2n.) As in the
case of lines, we define Vi, for k = 0,...,n — 2, to be the
set of vertices of A(S) (excluding segment endpoints) that
have exactly k segments passing below them. The set of
vertices of the k-th level, excluding segment endpoints and
jump discontinuities, is Vi—1 U Vi. The level bends to the
left at vertices of Vi—; and to the right at vertices of Vi. See
Figure 5 for an illustration.

Theorem 3.1 The complezity of any single level in an ar-
rangement of n line segments in the plane in generel position

is O(n%/?).
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Figure 5: The second level in an arrangement of segments;
here [Vi| =1 and {Vo] = 4.

First Proof (Potential Function): This proof is an adap-
tation of the potential function proof for the case of lines,
as given above. Let the segments be 81, 32,...,8,, sorted in
the order of decreasing slope of their containing lines, and
let k denote the given level. For each z, define the potential
function

®(z) =) {j| s liesat = at level < k}.

Assuming that all the given segments are bounded, we have
$(—00} = ®(+00) = 0, and in any case we have, as above,
®(z) = O(nk) for any z. As we sweep A(S) from left to
right, we are interested in the signed changes A&{z) in $(z).
The value of $(z) can change only in one of the following
three cases:

(i) = is the abscissa of the left endpoint of some segment
3;, and this endpoint lies below the current k-th level:
In this case we have A®(z} = i — j, where s; is the
segment that currently lies directly below the level.
{Here we have a discontinuity, where the level jumps
down one segment.) Note that we may have { = ;.

(if) z is the abscissa of the right endpoint of some segment
s;, and this endpoint lies on or below the current k-th
level: In this case we have A®(z) = j — i, where 5;
is the segment that currently lies on the level. (Here
we have a discontinuity, where the level jumps up one
segment.} Again, it is possible that £ = j.

(iif) z is the abscissa of a vertex v € Vi_; (as in the case of
lines, ¥(z) does not change at vertices of V;): Suppose
that v is the intersection of segments s; and s;, with
j>i Then Ad(z)=j—-i>0.

The number of events of types (i) and (ii} is at most 2n,
and the change in the potential at each of these events has
absolute value O(n), for a total change of absolute value
O{n®}). We thus have

ZM(:;) =0(»?),

where the summation is taken over all z that are the ab-
scissae of a vertex of Vi_;, and each of these changes is a
positive integer.

The proof now proceeds exactly as in the first proof of
Theorem 2.1, and we leave it to the reader to il in the
straightforward details. The difference between the cases of
segroents and of lines is that, in the case of segments, we can
only bound the total change in potential by O(n?), rather

than by O(nk}. In fact, in the case of segments, the bound
O(nvk + 1) is too small for small values of k. For example,
for k = 0 (that is, for the lower envelope of the segments) the
complexity of the level can be Q(na(n)) [25], which is larger
than the above bound. On the other hand, the complexity
of the k-th level is smaller than the overall complexity of the
first k levels, which is O(n(k + 1)a(n/(k + 1))) [22). This is
a better upper bound for small values of k. O

Second Proof (Concave Chains and Lovész Lemma):
We next present a second proof, based on a variant of the
dual Lovész Lemma given above. We use the same setup
as above. That is, for each v € Vj_;, we define the double
wedge W, formed by the two lines containing the segments
incident to v.

Lemma 3.2 For any point z € R?, not lying on any line
containing a segment of S, the number of double wedges W,
that contain z is at most 4n.

Proof: Let us first extend the notion of concave chains to
the case of segments. The chains are constructed as follows.
We start a new chain at (i) the left endpoint of any segment,
if that endpoint lies below the k-th level, and (ii) at any
point of discontinuity of the level, when the level jumps up
from a segment ¢; to a segment 8; (the chain is started along
the lower segment 8;). As z increases, each chain ¢ follows
the segment that it lies on, except when of the following
situations occurs:

(i) creaches the right endpoint of that segment, and then
¢ terminates there;

{ii) ¢ follows a segment 3; and reaches a discontinuity of
the k-th level, where the level jumps doun to s;, in
which case ¢ is terminated at that point; or

(ii) c reaches a vertex v € Vi_;, in which case ¢ bends
to the right, and continues along the other segment
incident to v.

We thus get a collection of at most 2n concave chains.
It is easy to verify that these chains also satisfy (appro-
priate variants of) properties (i)-{iii) in the second proof of
Theorem 2.1. Here the chains are graphs of partially-defined
functions. Note that the domain of definition of some chains
may also include intervals over which the k-th level is not
defined (because there are fewer than k + 1 segments over
such an interval).

The proof can now be completed as in the case of lines,
because, for each of the at most 2n chains ¢, a point z can
belong to at most two double wedges W,, for v € Vi_; Ne.
a

The proof of Theorem 3.1 now proceeds along the same
lines as the third proof of Theorem 2.1.

Remarks: (1) Both proofs presented in this section also
apply to the cases of pseudo-lines and pseudo-segments. We
have already defined the notion of a family of pseudo-lines.
A collection § of n z-monotone connected arcs is ¢ family
of pseudo-segments if each of them can be extended to an
z-monotone connected unbounded curve, so that this fam-
ily of curves is a collection of pseudo-lines. (This is a much
stronger definition than just requiring each pair of pseudo-
segments to intersect at most once; see Figure 6.} We leave
it to the reader to verify that both proofs go through in
the case of pseudo-segments, with straightforward modifica-
tions.




Figure 6: These five arcs do not form an arrangement of
pseudo-segments.

(2) The immediate challenge is to improve Theorem 3.1,
and obtain a better upper bound that also depends on k.
As noted above, such a2 bound cannot be O(nvk +1), at
least for small values of k.

(3) Another interesting open problem is to obtain an im-
proved bound for the complexity of a single level in the ar-
rangement of g piecewise-linear functions, whose graphs con-
sist of a total of n segments. Of course, the bound O(n%/?)
applies here, but perhaps one can obtain an improved bound
that is also a function of ¢ and is smaller when ¢ € n.

4 Improved Lovisz Lemma and Arrangements of Planes

Let P = {m,...,mn} be a collection of n planes in 3-space
in general position, and let A(P) denote the arrangement
of P. The k-th level of A(P) is defined as the closure of
the set of all points that lie in the union of the planes and
have exactly k planes lying below them. The complexity of
the level, regarded as a polyhedral surface, is the number of
its vertices, edges and faces. This is clearly proportional to
only the number of vertices, and we will focus on bounding
this latter quantity.

Theorem 4.1 The number of vertices of the k-th level of
A(P) is O(n®k?/3).

As already noted, this improves the bound O{(n®/3) that
was established in [8], when k <€ n, and is the first general
bound for the case of planes that depends also on &, except
for the O(nk?) bound on the combined complexity of the
first k levels 7). Note that our new bound is smaller than
this latter bound when k = Q(n*/*).

The proof of Theorem 4.1 follows the previous proofs
in {2, 8]. That is, it exploits a generalization of Lovisz
Lemma to three dimensions. We present here an improved
version of this lemma, in arbitrary dimension, which leads
to the improved bound of the theorem.

Let H be a collection of n hyperplanes in R? in general
position, and let 0 < k < n —d. Let Vi denote the set of
those vertices v of A(H) for which exactly k hyperplanes of
H pass below v. For each v € Vi, we denote by Hy the set
of the d hyperplanes incident to v, and let R, denote the
closed region (‘corridor’) lying between the upper and lower
envelopes of the hyperplanes of H,.

Lemma 4.2 (Dual Lovész Lemma in R?) For any (d—
2)-flat f in B¢, we have

{veVilfC R} =0(k"").
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It will be more convenient to state and prove the primal
version of this lemma. Fix a set S of n points in R?, in
general position. A k-set simplez is a (d — 1)-dimensional
simplex spanned by d points of S with the property that its
affine hull has precisely k points of S on one side of it.

Lemma 4.3 (Primal Lovész Lemma in R*) Let S be a
finite point set in R?. Then, for any line ¢, the number of
k-set simplices meeting € is O(k?™1).

Proof: Note that this formulation of the lemma is inde-
pendent of the choice of the coordinate system. Construct a
coordinate system in which £ coincides with the z4-axis. Du-
alize S to a system S* of n hyperplanes, using the standard
duality that maps a point (ai,...,a4) to the hyperplane
T4 = —G1Z1 —G2T2 ~*** — B4-1T4—1 + aq, and a hyperplane
T4 = biz14+b2z2+ - ~+by-12a-1-+ba to the point (by,...,bq4)
(see, e.g., [9]); this duality preserves incidences and above-
below relationships between points and hyperplanes (that is,
a point p lies below, on, or above a hyperplane A if and only
if the dual hyperplane p° of p lies below, on, or above the
point h°* dual to k). An application of such a duality also
shows that this lemma and the preceding one are indeed
dual versions of each other. It suffices to count the num-
ber of k-set simplices whose affine hulls have & points of S
strictly below them. The remaining class of k-set simplices
is handled by a symmetric argument.

The properties of the duality imply that the affine hull
of a k-set simplex A as above is mapped into a vertex A®
of the arrangement of S* which has precisely k hyperplanes
below it (and d hyperplanes passing through it). Hence A®
is a vertex of the k-th level of A(S*). Moreover, A meets
the z4-axis ¢ if and only if the horizontal hyperplane through
A” is contained in Ra-., i.e.,, A® is a local maximum of the
k-th level of A(S°). Indeed, A meets ¢ if and only if ev-
ery hyperplane that contains £ does not have all vertices of
A on one side. The set of these hyperplanes is mapped by
our duality to the set of all the points at infinity in horizon-
tal directions. Hence A meets ¢ if and only if every point
at infinity in a horizontal direction lies in Ra., which is
equivalent to the condition that the horizontal hyperplane
through A® is contained in Ra-, as asserted. As shown by
Clarkson [6], the number of local extrema of the k-th level
in an arrangement of hyperplanes in d-space is O(k%~"), and
this completes the proof of the lemma. w}

Proof of Theorem 4.1: Dey and Edelsbrunner [8] have
shown that if T is a collection of ¢ triangles in 3-space,
spanned by n points in general position, then there exists a
line £ that crosses 2(t*/n®) triangles of 7. Specifically, con-
sider the collection of the k-set triangles of an n-point set S.
Lemma 4.3 implies that no line can cross more than O(k?)
of these triangles. Combining this with the result of [8}, we
have [Vi}*/n® = O(k?), and the bound follows. o

5 Arrangements of Triangles

Let T = {A1,...,An} be a collection of n triangles in 3-
space in general position, and let A(7") denote the arrange-
ment of 7. The k-th level of A(T) is defined, again, as
the closure of the set of all points that lie in the union of
the triangles and have exactly k triangles lying below them
(that is, the relatively open vertical downward-directed ray

1The connection between local extrema of k-levels and Lovasz
Lemma was first observed by Clarkson, as briefly remarked in the
introduction of [6].




emerging from such a point intersects exactly k triangles).
As in the case of segments, the k-th level is not necessar-
ily connected, and may have jump discontinuities at points
that lie vertically above or on some triangle edge. The com-
plexity of the level, regarded as a polyhedral surface, is the
number of its vertices, edges and faces. Assuming general
position, this is clearly proportional to the number of ver-
tices only, and we will focus on bounding the number of
inner vertices, which are incident to three distinct triangles.
Any other, ‘outer’ vertex of the level lies in the vertical plane
H, spanned by some triangle edge e. Moreover, if we inter-
sect all the triangles with H,, we get a collection of at most
n segments, and the vertices of the k-th level of A(7) that
lie in H, are vertices of the k-th level of the 2-dimensional
arrangement of these segments within H., where e itself is
also included. By Theorem 3.1, the number of such vertices
is O(n*'?). Repeating this analysis for each triangle edge e,
we conclude that the number of outer vertices of the level is
O(n®?).

We bound the number of inner vertices using a variant
of the dual version of Lovdsz Lemma in 3-space. The bound
that we obtain is considerably weaker than the one given in
Lemma 4.2, but is still nontrivial. The proof of this version
of the lemma is also different and somewhat more involved.

Let v be an inner vertex of the k-th level, incident to
three triangles Aj, Az, Aa; v can be classified into three
categories, depending on whether the k-th level in the neigh-
borhood of v coincides with

{a) the lower envelope of A;, Ag, Ag,
(b} the first level of the arrangement A{{A;, A2, As}), or
{¢) the upper envelope of A1, Az, As.

Note that vertices of type (b) have the property that all six
edges of A(7) incident to the vertex lie on the k-th level,
whereas for vertices of type {a) or (c), only three of these
edges lie on the level, one edge on each segment of intersec-
tion of two of the triangles A;, Ag, As.

For each inner vertex v of the k-th level of type (a) or
{c), let R, be the closed region enclosed between the upper
envelope and the lower envelope of the three planes con-
taining the three triangles incident o v; see Figure 7 for a
cross-section of such an R,. We have the following weaker
version of Lovész lemma:

Lemma 5.1 Any line in B® is fully contained in at most
O(n®*) regions R, of vertices of type (a) and (c).

Proof: Let £; bealinein R®, and let H be the vertical plane
containing #;. For a triangle A € 7, let 7a be the plane
containing A and 0a = vaNH. Let Ay be the arrangement
in H of the ines {oa | A € T}. Let & be a line contained
in H, parallel to #;, and lying below all vertices of Ay. It
is easily checked that no region R, contains &. We will
move a line £ within H upwards, parallel to itself, from the
position when it colncides with & until it coincides with #;.
‘We estimate the change in the number of regions R, that
contain ¢ as it moves. Summing these changes yields the
bound on the desired quantity for £;.

The set of regions R, that fully contain £ can change only
when £ passes through a vertex of Ay. Clearly, the vertex
X = 04,104, has to be such that there is an inner type-(a)
or type-{c) vertex v in A incident to A; and Az. Under these
assumptions, for £ to become newly contained in a region R,
or to stop being contained in R,, as it sweeps past such a
vertex ¥, it is necessary and sufficient that the slope of £ lie

36

between the slopes of 04, and oa,; see Figure 7(a). Let x
be such a vertex (where this latter condition also holds). Put
A=ma, N7a,. Let 3 C A be the segment A; NA,. For all
regions R, that either start or stop containing £ as it sweeps
over X, v is contained in 3, so it suffices to concentrate only
on such regions R,.
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Figure 7: (a) Cross section of a region R, in H; the line ¢
just becomes contained in R.; (b) cross section of A(T) by
«; the intersections of R,, R, with = are shaded near the
respective vertices.

‘We mark on s all the inner vertices of the k-th level of
A(T) of types {a) and {c), and consider the set of maximal
subintervals of 8 not contained in the k-th level. Each such
subinterval I is delimited by two points u, v, each of which is
an inner vertex of the level of type (a) or (c) (it cannot be a
vertex of type {b) because all six edges incident to a type-(b)
vertex lie on the k-th level), a point of jump discontinuity of
the level, or an endpoint of 5. Let g, be the number of jump
discontinuities of the k-th level along s. Note that each such
discontinuity is an outer veriex of the k-th level. If an inner
vertex v is an endpoint of an interval along s whose other
endpoint v’ is either a jump discontinuity or an endpoint of
s, we charge v to v/, The number of such inner vertices {(and
therefore the change in the number of regions that contain
£, corresponding to such vertices) is at most g, + 2.

Next, consider an interval I, both of whose endpoints are
inner vertices, say u and v. Consider the vertical plane 7
containing A, and the cross-section of A(7") within 7 (refer
to Figure 7(b}}. Clearly, the k-th level of this cross-section
is contained in the k-th level of A(T), so it either lies fully
above I or fully below . In the former case both u and v
are of type (c), and in the latter case they are both of type
{a). Let -y be the vertical line H N, and let 6, = R, N7y
and §, = Ry Ny. If x € I, then it is easily checked that




du and 68, lie on opposite sides of x along v and thus are
disjoint except at their common endpoint x. This fact, and
our assumptions that the slope of £ is between the slopes
of oy = Ay NH and 0, = A, N H, imply that one of R,,
R, must be added, and the other one removed, from the
set of regions containing f, as £ sweeps over x. Hence, as ¢
sweeps over X, R, and R, “cancel” out each other, in terms
of containment of £.

To summarize, we have shown that as £ passes through
X, the change in the number of regions R, containing £ is at
most 4+¢,. This implies that the number of regions R, that
contain £ in its final position ¢, is at most 3 (4+¢,), where
the sum is over all O(n?) intersection segments between pairs
of triangles in 7. Since the number of outer vertices on the
k-th level is O(n®/?), as argued above, and each is counted at
most three times, Y, ¢ = O(n*?). The number of regions
containing £ is thus O(n?) + O(n*?) = O(n*?), as asserted.

What if ¢; actually passes through a vertex x = a4, N
oa; of An? Then the cancellation does not occur, which
adds fewer than n regions R, that can contain /—each such
region corresponds to some vertex of A(7) on the segment
[ NA; a]

Theorem 5.2 The complerity of any single level in an ar-
rangement of n triangles in $-space is O(n'"/%).

Proof: Lemma 5.1 implies that no line £ is contained in
more than O(n®?) regions R,. Passing to the dual space,
we obtain the following equivalent formulation, similar to
the case of planes: The planes containing the triangles in
7T are mapped to a set of n points. Each inner vertex v of
the k-th level is mapped to a triangle spanned by the three
points dual to the planes containing the triangles incident
to v. The line ¢ is mapped to another line £°, and ¢ is
contained in R, if and only if £* crosses the triangle dual
to v. We now have a system of X triangles in 3-space,
spanned by a total of n points, where X is the number of
inner vertices of the k-th level of types (a) and (c). As in
the proof of Theorem 4.1, there exists a line that crosses
at least 2(X?/n®) such triangles {8]. On the other hand,
by Lemma 5.1, this number is at most O(n®/?). Combining
these two inequalities yields X = O(n'7/%). We still need to
bound the number of vertices of type (b). However, these
vertices are vertices of type (a) of the (k — 1)-st level, so,
repeating the above analysis for this level, we obtain the
bound asserted in the theorem. o

Remark: An open problem is to extend Lemmas 4.2 and 5.1
to the respective cases of pseudo-hyperplanes and pseudo-
triangles, under appropriate definitions of these objects, and
then to extend the proof of Theorem 5.2 to these cases. Note
that there are two different problems to address: One is to
extend Lovész Lemma, and the other calls for a dual and
more general version of the analysis technique of [8] (that
yields a line that stabs many triangles).
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